Class 7 Chapter 12 – Algebraic Expressions Ex 12.2

 Maths NCERT Solutions For Class 7 Chapter 12 – Algebraic Expressions Ex 12.2

Simple solutions for NCERT Solutions for Class 7 Maths Algebraic Expressions Ex 12.2  are given here in the post. This NCERT Solutions for Class 7 Maths Exercise 12.2 contains topics related to the raw data collection and its organisation. so we definitely want students of Class 7 to solve Class 7 Algebraic Expressions Ex 12.2 to empower their basics and test the students capability of understanding the concepts. It also helps the students of CBSE Class 7 Maths students

Question 1. 
Simplify combining like terms:

(i) 21b – 32 + 7b – 20b

Solution:-

When term have the same algebraic factors, they are like terms.
Then,
= (21b + 7b – 20b) – 32
= b (21 + 7 – 20) – 32
= b (28 – 20) – 32
= b (8) – 32
= 8b – 32

(ii) – z2 + 13z2 – 5z + 7z3 – 15z

Solution:-
When term have the same algebraic factors, they are like terms.
Then,
= 7z3 + (-z2 + 13z2) + (-5z – 15z)
= 7z3 + z2 (-1 + 13) + z (-5 – 15)
= 7z3 + z2 (12) + z (-20)
= 7z3 + 12z2 – 20z

(iii) p – (p – q) – q – (q – p)
Solution:-
When term have the same algebraic factors, they are like terms.
Then,
= p – p + q – q – q + p
= p – q

(iv) 3a – 2b – ab – (a – b + ab) + 3ab + b – a
Solution:-
When term have the same algebraic factors, they are like terms.
Then,
= 3a – 2b – ab – a + b – ab + 3ab + b – a
= 3a – a – a – 2b + b + b – ab – ab + 3ab
= a (1 – 1- 1) + b (-2 + 1 + 1) + ab (-1 -1 + 3)
= a (1 – 2) + b (-2 + 2) + ab (-2 + 3)
= a (1) + b (0) + ab (1)
= a + ab

(v) 5x2y – 5x2 + 3yx2 – 3y2 + x2 – y2 + 8xy2 – 3y2
Solution:-
When term have the same algebraic factors, they are like terms.
Then,
= 5x2y + 3yx2 – 5x2 + x2 – 3y2 – y2 – 3y2
= x2y (5 + 3) + x2 (- 5 + 1) + y2 (-3 – 1 -3) + 8xy2
= x2y (8) + x2 (-4) + y2 (-7) + 8xy2
= 8x2y – 4x2 – 7y2 + 8xy2

(vi) (3y2 + 5y – 4) – (8y – y2 – 4)
Solution:-
When term have the same algebraic factors, they are like terms.
Then,
= 3y2 + 5y – 4 – 8y + y2 + 4
= 3y2 + y2 + 5y – 8y – 4 + 4
= y2 (3 + 1) + y (5 – 8) + (-4 + 4)
= y2 (4) + y (-3) + (0)
= 4y2 – 3y

2. Add:

(i) 3mn, – 5mn, 8mn, – 4mn

Solution:-

When term have the same algebraic factors, they are like terms.

Then, we have to add the like terms

= 3mn + (-5mn) + 8mn + (- 4mn)

= 3mn – 5mn + 8mn – 4mn

= mn (3 – 5 + 8 – 4)

= mn (11 – 9)

= mn (2)

= 2mn

(ii) t – 8tz, 3tz – z, z – t

Solution:-

When term have the same algebraic factors, they are like terms.

Then, we have to add the like terms

= t – 8tz + (3tz – z) + (z – t)

= t – 8tz + 3tz – z + z – t

= t – t – 8tz + 3tz – z + z

= t (1 – 1) + tz (- 8 + 3) + z (-1 + 1)

= t (0) + tz (- 5) + z (0)

= – 5tz

(iii) – 7mn + 5, 12mn + 2, 9mn – 8, – 2mn – 3

Solution:-

When term have the same algebraic factors, they are like terms.

Then, we have to add the like terms

= – 7mn + 5 + 12mn + 2 + (9mn – 8) + (- 2mn – 3)

= – 7mn + 5 + 12mn + 2 + 9mn – 8 – 2mn – 3

= – 7mn + 12mn + 9mn – 2mn + 5 + 2 – 8 – 3

= mn (-7 + 12 + 9 – 2) + (5 + 2 – 8 – 3)

= mn (- 9 + 21) + (7 – 11)

= mn (12) – 4

= 12mn – 4

(iv) a + b – 3, b – a + 3, a – b + 3

Solution:-

When term have the same algebraic factors, they are like terms.

Then, we have to add the like terms

= a + b – 3 + (b – a + 3) + (a – b + 3)

= a + b – 3 + b – a + 3 + a – b + 3

= a – a + a + b + b – b – 3 + 3 + 3

= a (1 – 1 + 1) + b (1 + 1 – 1) + (-3 + 3 + 3)

= a (2 -1) + b (2 -1) + (-3 + 6)

= a (1) + b (1) + (3)

= a + b + 3

(v) 14x + 10y – 12xy – 13, 18 – 7x – 10y + 8xy, 4xy

Solution:-

When term have the same algebraic factors, they are like terms.

Then, we have to add the like terms

= 14x + 10y – 12xy – 13 + (18 – 7x – 10y + 8xy) + 4xy

= 14x + 10y – 12xy – 13 + 18 – 7x – 10y + 8xy + 4xy

= 14x – 7x + 10y– 10y – 12xy + 8xy + 4xy – 13 + 18

= x (14 – 7) + y (10 – 10) + xy(-12 + 8 + 4) + (-13 + 18)

= x (7) + y (0) + xy(0) + (5)

= 7x + 5

(vi) 5m – 7n, 3n – 4m + 2, 2m – 3mn – 5

Solution:-

When term have the same algebraic factors, they are like terms.

Then, we have to add the like terms

= 5m – 7n + (3n – 4m + 2) + (2m – 3mn – 5)

= 5m – 7n + 3n – 4m + 2 + 2m – 3mn – 5

= 5m – 4m + 2m – 7n + 3n – 3mn + 2 – 5

= m (5 – 4 + 2) + n (-7 + 3) – 3mn + (2 – 5)

= m (3) + n (-4) – 3mn + (-3)

= 3m – 4n – 3mn – 3

(vii) 4x2y, – 3xy2, –5xy2, 5x2y

Solution:-

When term have the same algebraic factors, they are like terms.

Then, we have to add the like terms

= 4x2y + (-3xy2) + (-5xy2) + 5x2y

= 4x2y + 5x2y – 3xy2 – 5xy2

= x2y (4 + 5) + xy(-3 – 5)

= x2y (9) + xy2 (- 8)

= 9x2y – 8xy2

(viii) 3p2q2 – 4pq + 5, – 10 p2q2, 15 + 9pq + 7p2q2

Solution:-

When term have the same algebraic factors, they are like terms.

Then, we have to add the like terms

= 3p2q2 – 4pq + 5 + (- 10p2q2) + 15 + 9pq + 7p2q2

= 3p2q2 – 10p2q2 + 7p2q2 – 4pq + 9pq + 5 + 15

= p2q2 (3 -10 + 7) + pq (-4 + 9) + (5 + 15)

= p2q(0) + pq (5) + 20

= 5pq + 20

(ix) ab – 4a, 4b – ab, 4a – 4b

Solution:-

When term have the same algebraic factors, they are like terms.

Then, we have to add the like terms

= ab – 4a + (4b – ab) + (4a – 4b)

= ab – 4a + 4b – ab + 4a – 4b

= ab – ab – 4a + 4a + 4b – 4b

= ab (1 -1) + a (4 – 4) + b (4 – 4)

= ab (0) + a (0) + b (0)

= 0

(x) x2 – y2 – 1, y2 – 1 – x2, 1 – x2 – y2

Solution:-

When term have the same algebraic factors, they are like terms.

Then, we have to add the like terms

= x2 – y2 – 1 + (y2 – 1 – x2) + (1 – x2 – y2)

= x2 – y2 – 1 + y2 – 1 – x2 + 1 – x2 – y2

= x2 – x2 – x2 – y2 + y2 – y– 1 – 1 + 1

= x2 (1 – 1- 1) + y2 (-1 + 1 – 1) + (-1 -1 + 1)

= x2 (1 – 2) + y2 (-2 +1) + (-2 + 1)

= x2 (-1) + y2 (-1) + (-1)

= -x2 – y2 -1

3. Subtract:

(i) –5y2 from y2

Solution:-

When term have the same algebraic factors, they are like terms.

Then, we have to subtract the like terms

= y2 – (-5y2)

= y2 + 5y2

= 6y2

(ii) 6xy from –12xy

Solution:-

When term have the same algebraic factors, they are like terms.

Then, we have to subtract the like terms

= -12xy – 6xy

= – 18xy

(iii) (a – b) from (a + b)

Solution:-

When term have the same algebraic factors, they are like terms.

Then, we have to subtract the like terms

= (a + b) – (a – b)

= a + b – a + b

= a – a + b + b

= a (1 – 1) + b (1 + 1)

= a (0) + b (2)

= 2b

(iv) a (b – 5) from b (5 – a)

Solution:-

When term have the same algebraic factors, they are like terms.

Then, we have to subtract the like terms

= b (5 -a) – a (b – 5)

= 5b – ab – ab + 5a

= 5b + ab (-1 -1) + 5a

= 5a + 5b – 2ab

(v) –m2 + 5mn from 4m2 – 3mn + 8

Solution:-

When term have the same algebraic factors, they are like terms.

Then, we have to subtract the like terms

= 4m2 – 3mn + 8 – (- m2 + 5mn)

= 4m2 – 3mn + 8 + m2 – 5mn

= 4m2 + m2 – 3mn – 5mn + 8

= 5m– 8mn + 8

(vi) – x2 + 10x – 5 from 5x – 10

Solution:-

When term have the same algebraic factors, they are like terms.

Then, we have to subtract the like terms

= 5x – 10 – (-x2 + 10x – 5)

= 5x – 10 + x2 – 10x + 5

= x2 + 5x – 10x – 10 + 5

= x2 – 5x – 5

(vii) 5a2 – 7ab + 5b2 from 3ab – 2a2 – 2b2

Solution:-

When term have the same algebraic factors, they are like terms.

Then, we have to subtract the like terms

= 3ab – 2a2 – 2b2 – (5a2 – 7ab + 5b2)

= 3ab – 2a2 – 2b2 – 5a+ 7ab – 5b2

= 3ab + 7ab – 2a2 – 5a2 – 2b2 – 5b2

= 10ab – 7a2 – 7b2

(viii) 4pq – 5q2 – 3p2 from 5p2 + 3q2 – pq

Solution:-

When term have the same algebraic factors, they are like terms.

Then, we have to subtract the like terms

= 5p2 + 3q2 – pq – (4pq – 5q2 – 3p2)

= 5p2 + 3q2 – pq – 4pq + 5q2 + 3p2

= 5p2 + 3p2 + 3q2 + 5q2 – pq – 4pq

= 8p2 + 8q2 – 5pq

4. (a) What should be added to x2 + xy + y2 to obtain 2x2 + 3xy?

Solution:-

Let us assume p be the required term

Then,

p + (x2 + xy + y2) = 2x2 + 3xy

p = (2x2 + 3xy) – (x2 + xy + y2)

p = 2x2 + 3xy – x2 – xy – y2

p = 2x2 – x2 + 3xy – xy – y2

p = x2 + 2xy – y2

(b) What should be subtracted from 2a + 8b + 10 to get – 3a + 7b + 16?

Solution:-

Let us assume x be the required term

Then,

2a + 8b + 10 – x = -3a + 7b + 16

x = (2a + 8b + 10) – (-3a + 7b + 16)

x = 2a + 8b + 10 + 3a – 7b – 16

x = 2a + 3a + 8b – 7b + 10 – 16

x = 5a + b – 6

5. What should be taken away from 3x2 – 4y2 + 5xy + 20 to obtain – x2 – y2 + 6xy + 20?

Solution:-

Let us assume a be the required term

Then,

3x2 – 4y2 + 5xy + 20 – a = -x2 – y2 + 6xy + 20

a = 3x2 – 4y2 + 5xy + 20 – (-x2 – y2 + 6xy + 20)

a = 3x2 – 4y2 + 5xy + 20 + x2 + y2 – 6xy – 20

a = 3x2 + x2 – 4y2 + y2 + 5xy – 6xy + 20 – 20

a = 4x2 – 3y2 – xy

6. (a) From the sum of 3x – y + 11 and – y – 11, subtract 3x – y – 11.

Solution:-

First we have to find out the sum of 3x – y + 11 and – y – 11

= 3x – y + 11 + (-y – 11)

= 3x – y + 11 – y – 11

= 3x – y – y + 11 – 11

= 3x – 2y

Now, subtract 3x – y – 11 from 3x – 2y

= 3x – 2y – (3x – y – 11)

= 3x – 2y – 3x + y + 11

= 3x – 3x – 2y + y + 11

= -y + 11

(b) From the sum of 4 + 3x and 5 – 4x + 2x2, subtract the sum of 3x2 – 5x and –x2 + 2x + 5.

Solution:-

First we have to find out the sum of 4 + 3x and 5 – 4x + 2x2

= 4 + 3x + (5 – 4x + 2x2)

= 4 + 3x + 5 – 4x + 2x2

= 4 + 5 + 3x – 4x + 2x2

= 9 – x + 2x2

= 2x2 – x + 9 … [equation 1]

Then, we have to find out the sum of 3x2 – 5x and – x2 + 2x + 5

= 3x2 – 5x + (-x2 + 2x + 5)

= 3x2 – 5x – x2 + 2x + 5

= 3x2 – x2 – 5x + 2x + 5

= 2x2 – 3x + 5 … [equation 2]

Now, we have to subtract equation (2) from equation (1)

= 2x– x + 9 – (2x2 – 3x + 5)

= 2x2 – x + 9 – 2x2 + 3x – 5

= 2x2 – 2x2 – x + 3x + 9 – 5

= 2x + 4