Class-8 Maths- Factorisation Ex 14.2

Class-8 Maths- Factorisation Ex 14.2

Keeping the examination point of view in mind the mathematicsandinformationtechnology.com team has prepared NCERT Solutions for Class-8 Maths- Factorisation Ex 14.2. The NCERT Solutions for chapter Factorisation solutions explains the easy and simple way to solve the problems. By understanding these ways in NCERT Solutions for Class 8, students will be confident while solving such problems found in Class-8 Maths- Factorisation Ex 14.2.

Question 1: Factorise the following expressions.

(i) a2 + 8a + 16

(ii) p2 − 10p + 25

(iii) 25m2 + 30m + 9

(iv) 49y2 + 84yz + 36z2

(v) 4x2 âˆ’ 8x + 4

(vi) 121b2 − 88bc + 16c2

(vii) (l + m)2 − 4lm (Hint: Expand (l + m)2 first)

(viii) a4 + 2a2b2 + b4

Answer:

(i) a2 + 8a + 16 = (a)2 + 2 × a × 4 + (4)2

= (a + 4)2 [(x + y)2 = x2 + 2xy + y2]

(ii) p2 − 10p + 25 = (p)2 − 2 × p × 5 + (5)2

= (p − 5)2 [(a − b)2 = a2 − 2ab + b2]

(iii) 25m2 + 30m + 9 = (5m)2 + 2 × 5m × 3 + (3)2

= (5m + 3)2 [(a + b)2 = a2 + 2ab + b2]

(iv) 49y2 + 84yz + 36z2 = (7y)2 + 2 × (7y) × (6z) + (6z)2

= (7y + 6z)2 [(a + b)2 = a2 + 2ab + b2]

(v) 4x2 − 8x + 4 = (2x)2 − 2 (2x) (2) + (2)2

= (2x − 2)2 [(a − b)2 = a2 âˆ’ 2ab + b2]

= [(2) (x − 1)]2 = 4(x − 1)2

(vi) 121b2 âˆ’ 88bc + 16c2 = (11b)2 âˆ’ 2 (11b) (4c) + (4c)2

= (11b − 4c)2 [(a − b)2 = a2 − 2ab + b2]

(vii) (l + m)2 − 4lm = l2 + 2lm + m2 âˆ’ 4lm

= l2 âˆ’ 2lm + m2

= (l − m)2 [(a − b)2 = a2 âˆ’ 2ab + b2]

(viii) a4 + 2a2b2 + b4 = (a2)2 + 2 (a2) (b2) + (b2)2

= (a2 + b2)2 [(a + b)2 = a2 + 2ab + b2]

Question 2: Factorise

(i) 4p2 âˆ’ 9q2

(ii) 63a2 âˆ’ 112b2

(iii) 49x2 âˆ’ 36

(iv) 16x5 âˆ’ 144x3

(v) (l + m)2 âˆ’ (l − m)2

(vi) 9x2y2 âˆ’ 16

(vii) (x2 âˆ’ 2xy + y2) − z2

(viii) 25a2 âˆ’ 4b2 + 28bc − 49c2

Answer:

(i) 4p2 âˆ’ 9q2 = (2p)2 âˆ’ (3q)2

= (2p + 3q) (2p − 3q) [a2 âˆ’ b2 = (a − b) (a + b)]

(ii) 63a2 âˆ’ 112b2 = 7(9a2 âˆ’ 16b2)

= 7[(3a)2 âˆ’ (4b)2]

= 7(3a + 4b) (3a − 4b) [a2 âˆ’ b2 = (a − b) (a + b)]

(iii) 49x2 âˆ’ 36 = (7x)2 âˆ’ (6)2

= (7x − 6) (7x + 6) [a2 âˆ’ b2 = (a − b) (a + b)]

(iv) 16x5 âˆ’ 144x3 = 16x3(x2 âˆ’ 9)

= 16 x3 [(x)2 âˆ’ (3)2]

= 16 x3(x − 3) (x + 3) [a2 âˆ’ b2 = (a − b) (a + b)]

(v) (l + m)2 âˆ’ (l − m)2 = [(l + m) − (l − m)] [(l + m) + (l − m)]

[Using identity a2 âˆ’ b2 = (a − b) (a + b)]

= (l + m − l + m) (l + m + l − m)

= 2m × 2l

= 4ml

= 4lm

(vi) 9x2y2 âˆ’ 16 = (3xy)2 âˆ’ (4)2

= (3xy − 4) (3xy + 4) [a2 âˆ’ b2 = (a − b) (a + b)]

(vii) (x2 âˆ’ 2xy + y2) − z2 = (x − y)2 âˆ’ (z)2 [(a − b)2 = a2 âˆ’ 2ab + b2]

= (x − y − z) (x − y + z) [a2 − b2 = (a − b) (a + b)]

(viii) 25a2 − 4b2 + 28bc − 49c2 = 25a2 − (4b2 − 28bc + 49c2)

= (5a)2 − [(2b)2 − 2 × 2b × 7c + (7c)2]

= (5a)2 − [(2b − 7c)2]

[Using identity (a − b)2 = a2 âˆ’ 2ab + b2]

= [5a + (2b − 7c)] [5a − (2b − 7c)]

[Using identity a2 − b2 = (a − b) (a + b)]

= (5a + 2b − 7c) (5a − 2b + 7c)

Question 3:Factorise the expressions

(i) ax2 + bx

(ii) 7p2 + 21q2

(iii) 2x3 + 2xy2 + 2xz2

(iv) am2 + bm2 + bn2 + an2

(v) (lm + l) + m + 1

(vi) y(y + z) + 9(y + z)

(vii) 5y2 − 20y − 8z + 2yz

(viii) 10ab + 4a + 5b + 2

(ix) 6xy − 4y + 6 − 9x

Answer:

(i) ax2 + bx = a × x × x + b × x = x(ax + b)

(ii) 7p2 + 21q2 = 7 × p × p + 3 × 7 × q × q = 7(p2 + 3q2)

(iii) 2x3 + 2xy2 + 2xz2 = 2x(x2 + y2 + z2)

(iv) am2 + bm2 + bn2 + an2 = am2 + bm2 + an2 + bn2

= m2(a + b) + n2(a + b)

= (a + b) (m2 + n2)

(v) (lm + l) + m + 1 = lm + m + l + 1

= m(l + 1) + 1(l + 1)

= (l + l) (m + 1)

(vi) y (y + z) + 9 (y + z) = (y + z) (y + 9)

(vii) 5y2 âˆ’ 20y − 8z + 2yz = 5y2 âˆ’ 20y + 2yz − 8z

= 5y(y − 4) + 2z(y − 4)

= (y − 4) (5y + 2z)

(viii) 10ab + 4a + 5b + 2 = 10ab + 5b + 4a + 2

= 5b(2a + 1) + 2(2a + 1)

= (2a + 1) (5b + 2)

(ix) 6xy − 4y + 6 − 9x = 6xy − 9x − 4y + 6

= 3x(2y − 3) − 2(2y − 3)

= (2y − 3) (3x − 2)

Question 4:-Factorise

(i) a4 âˆ’ b4

(ii) p4 âˆ’ 81

(iii) x4 âˆ’ (y + z)4

(iv) x4 âˆ’ (x − z)4

(v) a4 âˆ’ 2a2b2 + b4

Answer:

(i) a4 âˆ’ b4 = (a2)2 âˆ’ (b2)2

= (a2 âˆ’ b2) (a2 + b2)

= (a − b) (a + b) (a2 + b2)

(ii) p4 âˆ’ 81 = (p2)2 âˆ’ (9)2

= (p2 âˆ’ 9) (p2 + 9)

= [(p)2 âˆ’ (3)2] (p2 + 9)

= (p − 3) (p + 3) (p2 + 9)

(iii) x4 âˆ’ (y + z)4 = (x2)2 âˆ’ [(y +z)2]2

= [x2 âˆ’ (y + z)2] [x2 + (y + z)2]

= [x − (y + z)][ x + (y + z)] [x2 + (y + z)2]

= (x − y − z) (x + y + z) [x2 + (y + z)2]

(iv) x4 − (x − z)4 = (x2)2 − [(x − z)2]2

= [x2 âˆ’ (x − z)2] [x2 + (x − z)2]

= [x − (x − z)] [x + (x − z)] [x2 + (x − z)2]

= z(2x − z) [x2 + x2 âˆ’ 2xz + z2]

= z(2x − z) (2x2 âˆ’ 2xz + z2)

(v) a4 âˆ’ 2a2b2 + b4 = (a2)2 âˆ’ 2 (a2) (b2) + (b2)2

= (a2 âˆ’ b2)2

= [(a − b) (a + b)]2

= (a − b)2 (a + b)2

Question 5: Factorise the following expressions

(i) p2 + 6p + 8

(ii) q2 âˆ’ 10q + 21

(iii) p2 + 6p − 16

Answer:

(i) p2 + 6p + 8

It can be observed that, 8 = 4 × 2 and 4 + 2 = 6

∴ p2 + 6p + 8 = p2 + 2p + 4p + 8

= p(p + 2) + 4(p + 2)

= (p + 2) (p + 4)

(ii) q2 âˆ’ 10q + 21

It can be observed that, 21 = (−7) × (−3) and (−7) + (−3) = − 10

∴ q2 âˆ’ 10q + 21 = q2 âˆ’ 7q − 3q + 21

= q(q − 7) − 3(q − 7)

= (q − 7) (q − 3)

(iii) p2 + 6p − 16

It can be observed that, 16 = (−2) × 8 and 8 + (−2) = 6

p2 + 6p − 16 = p2 + 8p − 2p − 16

= p(p + 8) − 2(p + 8)

= (p + 8) (p − 2)