Class-8 Maths- Factorisation Ex 14.2

Class-8 Maths- Factorisation Ex 14.2

Keeping the examination point of view in mind the mathematicsandinformationtechnology.com team has prepared NCERT Solutions for Class-8 Maths- Factorisation Ex 14.2. The NCERT Solutions for chapter Factorisation solutions explains the easy and simple way to solve the problems. By understanding these ways in NCERT Solutions for Class 8, students will be confident while solving such problems found in Class-8 Maths- Factorisation Ex 14.2.

Question 1: Factorise the following expressions.

(i) a2 + 8a + 16

(ii) p2 − 10p + 25

(iii) 25m2 + 30m + 9

(iv) 49y2 + 84yz + 36z2

(v) 4x2 − 8x + 4

(vi) 121b2 − 88bc + 16c2

(vii) (l + m)2 − 4lm (Hint: Expand (l + m)2 first)

(viii) a4 + 2a2b2 + b4

Answer:

(i) a2 + 8a + 16 = (a)2 + 2 × a × 4 + (4)2

= (a + 4)2 [(x + y)2 = x2 + 2xy + y2]

(ii) p2 − 10p + 25 = (p)2 − 2 × p × 5 + (5)2

= (p − 5)2 [(a − b)2 = a2 − 2ab + b2]

(iii) 25m2 + 30m + 9 = (5m)2 + 2 × 5m × 3 + (3)2

= (5m + 3)2 [(a + b)2 = a2 + 2ab + b2]

(iv) 49y2 + 84yz + 36z2 = (7y)2 + 2 × (7y) × (6z) + (6z)2

= (7y + 6z)2 [(a + b)2 = a2 + 2ab + b2]

(v) 4x2 − 8x + 4 = (2x)2 − 2 (2x) (2) + (2)2

= (2x − 2)2 [(a − b)2 = a2 − 2ab + b2]

= [(2) (x − 1)]2 = 4(x − 1)2

(vi) 121b2 − 88bc + 16c2 = (11b)2 − 2 (11b) (4c) + (4c)2

= (11b − 4c)2 [(a − b)2 = a2 − 2ab + b2]

(vii) (l + m)2 − 4lm = l2 + 2lm + m2 − 4lm

= l2 − 2lm + m2

= (l − m)2 [(a − b)2 = a2 − 2ab + b2]

(viii) a4 + 2a2b2 + b4 = (a2)2 + 2 (a2) (b2) + (b2)2

= (a2 + b2)2 [(a + b)2 = a2 + 2ab + b2]

Question 2: Factorise

(i) 4p2 − 9q2

(ii) 63a2 − 112b2

(iii) 49x2 − 36

(iv) 16x5 − 144x3

(v) (l + m)2 − (l − m)2

(vi) 9x2y2 − 16

(vii) (x2 − 2xy + y2) − z2

(viii) 25a2 − 4b2 + 28bc − 49c2

Answer:

(i) 4p2 − 9q2 = (2p)2 − (3q)2

= (2p + 3q) (2p − 3q) [a2 − b2 = (a − b) (a + b)]

(ii) 63a2 − 112b2 = 7(9a2 − 16b2)

= 7[(3a)2 − (4b)2]

= 7(3a + 4b) (3a − 4b) [a2 − b2 = (a − b) (a + b)]

(iii) 49x2 − 36 = (7x)2 − (6)2

= (7x − 6) (7x + 6) [a2 − b2 = (a − b) (a + b)]

(iv) 16x5 − 144x3 = 16x3(x2 − 9)

= 16 x3 [(x)2 − (3)2]

= 16 x3(x − 3) (x + 3) [a2 − b2 = (a − b) (a + b)]

(v) (l + m)2 − (l − m)2 = [(l + m) − (l − m)] [(l + m) + (l − m)]

[Using identity a2 − b2 = (a − b) (a + b)]

= (l + m − l + m) (l + m + l − m)

= 2m × 2l

= 4ml

= 4lm

(vi) 9x2y2 − 16 = (3xy)2 − (4)2

= (3xy − 4) (3xy + 4) [a2 − b2 = (a − b) (a + b)]

(vii) (x2 − 2xy + y2) − z2 = (x − y)2 − (z)2 [(a − b)2 = a2 − 2ab + b2]

= (x − y − z) (x − y + z) [a2 − b2 = (a − b) (a + b)]

(viii) 25a2 − 4b2 + 28bc − 49c2 = 25a2 − (4b2 − 28bc + 49c2)

= (5a)2 − [(2b)2 − 2 × 2b × 7c + (7c)2]

= (5a)2 − [(2b − 7c)2]

[Using identity (a − b)2 = a2 − 2ab + b2]

= [5a + (2b − 7c)] [5a − (2b − 7c)]

[Using identity a2 − b2 = (a − b) (a + b)]

= (5a + 2b − 7c) (5a − 2b + 7c)

Question 3:Factorise the expressions

(i) ax2 + bx

(ii) 7p2 + 21q2

(iii) 2x3 + 2xy2 + 2xz2

(iv) am2 + bm2 + bn2 + an2

(v) (lm + l) + m + 1

(vi) y(y + z) + 9(y + z)

(vii) 5y2 − 20y − 8z + 2yz

(viii) 10ab + 4a + 5b + 2

(ix) 6xy − 4y + 6 − 9x

Answer:

(i) ax2 + bx = a × x × x + b × x = x(ax + b)

(ii) 7p2 + 21q2 = 7 × p × p + 3 × 7 × q × q = 7(p2 + 3q2)

(iii) 2x3 + 2xy2 + 2xz2 = 2x(x2 + y2 + z2)

(iv) am2 + bm2 + bn2 + an2 = am2 + bm2 + an2 + bn2

= m2(a + b) + n2(a + b)

= (a + b) (m2 + n2)

(v) (lm + l) + m + 1 = lm + m + l + 1

= m(l + 1) + 1(l + 1)

= (l + l) (m + 1)

(vi) y (y + z) + 9 (y + z) = (y + z) (y + 9)

(vii) 5y2 − 20y − 8z + 2yz = 5y2 − 20y + 2yz − 8z

= 5y(y − 4) + 2z(y − 4)

= (y − 4) (5y + 2z)

(viii) 10ab + 4a + 5b + 2 = 10ab + 5b + 4a + 2

= 5b(2a + 1) + 2(2a + 1)

= (2a + 1) (5b + 2)

(ix) 6xy − 4y + 6 − 9x = 6xy − 9x − 4y + 6

= 3x(2y − 3) − 2(2y − 3)

= (2y − 3) (3x − 2)

Question 4:-Factorise

(i) a4 − b4

(ii) p4 − 81

(iii) x4 − (y + z)4

(iv) x4 − (x − z)4

(v) a4 − 2a2b2 + b4

Answer:

(i) a4 − b4 = (a2)2 − (b2)2

= (a2 − b2) (a2 + b2)

= (a − b) (a + b) (a2 + b2)

(ii) p4 − 81 = (p2)2 − (9)2

= (p2 − 9) (p2 + 9)

= [(p)2 − (3)2] (p2 + 9)

= (p − 3) (p + 3) (p2 + 9)

(iii) x4 − (y + z)4 = (x2)2 − [(y +z)2]2

= [x2 − (y + z)2] [x2 + (y + z)2]

= [x − (y + z)][ x + (y + z)] [x2 + (y + z)2]

= (x − y − z) (x + y + z) [x2 + (y + z)2]

(iv) x4 − (x − z)4 = (x2)2 − [(x − z)2]2

= [x2 − (x − z)2] [x2 + (x − z)2]

= [x − (x − z)] [x + (x − z)] [x2 + (x − z)2]

= z(2x − z) [x2 + x2 − 2xz + z2]

= z(2x − z) (2x2 − 2xz + z2)

(v) a4 − 2a2b2 + b4 = (a2)2 − 2 (a2) (b2) + (b2)2

= (a2 − b2)2

= [(a − b) (a + b)]2

= (a − b)2 (a + b)2

Question 5: Factorise the following expressions

(i) p2 + 6p + 8

(ii) q2 − 10q + 21

(iii) p2 + 6p − 16

Answer:

(i) p2 + 6p + 8

It can be observed that, 8 = 4 × 2 and 4 + 2 = 6

∴ p2 + 6p + 8 = p2 + 2p + 4p + 8

= p(p + 2) + 4(p + 2)

= (p + 2) (p + 4)

(ii) q2 − 10q + 21

It can be observed that, 21 = (−7) × (−3) and (−7) + (−3) = − 10

∴ q2 − 10q + 21 = q2 − 7q − 3q + 21

= q(q − 7) − 3(q − 7)

= (q − 7) (q − 3)

(iii) p2 + 6p − 16

It can be observed that, 16 = (−2) × 8 and 8 + (−2) = 6

p2 + 6p − 16 = p2 + 8p − 2p − 16

= p(p + 8) − 2(p + 8)

= (p + 8) (p − 2)