ncert solutions for class 8 maths exercise 2.4

Linear Equations in One Variable-Exercise 2.4

Question 1:

Solve the linear equation : x/1/5  x/1/4

Answer:

x/1/x/1/4

L.C.M. of the denominators, 2, 3, 4, and 5, is 60.

Multiplying both sides by 60, we obtain

60 ( x/1/) = ( x/1/4 )

⇒ 30x − 12 = 20x + 15 (Opening the brackets)

⇒ 30x − 20x = 15 + 12

⇒ 10x = 27

⇒ x = 27/10

Question 2:

Solve the linear equation: n/3n/5n/= 21

Answer:

n/3n/5n/= 21

L.C.M. of the denominators, 2, 4, and 6, is 12.

Multiplying both sides by 12, we obtain

6n − 9n + 10n = 252

⇒ 7n = 252

⇒ n = 36

Question 3:

Solve the linear equation: x + 7 - 8x/17/5x/2

Answer:

x + 7 - 8x/17/5x/2

L.C.M. of the denominators, 2, 3, and 6, is 6.

Multiplying both sides by 6, we obtain

6x + 42 − 16x = 17 − 15x

⇒ 6x − 16x + 15x = 17 − 42

⇒ 5x = −25

⇒ x = −5

Question 4:

Solve the linear equation: ( x - 5 )/( x - 3 )/5

Answer:

L.C.M. of the denominators, 3 and 5, is 15.

Multiplying both sides by 15, we obtain

5 ( x − 5 ) = 3 ( x − 3 )

⇒ 5x − 25 = 3x − 9 (Opening the brackets)

⇒ 5x − 3x = 25 − 9

⇒ 2x = 16

⇒ x = 8

Question 5:

Solve the linear equation: ( 3t - 2 )/( 2t + 3 )/2/- t

Answer:

L.C.M. of the denominators, 3 and 4, is 12.

Multiplying both sides by 12, we obtain

3 ( 3t − 2 ) − 4 ( 2t + 3 ) = 8 − 12t

⇒ 9t − 6 − 8t − 12 = 8 − 12t (Opening the brackets)

⇒ 9t − 8t + 12t = 8 + 6 + 12

⇒ 13t = 26

⇒ t = 2

Question 6:

Solve the linear equation : m - ( m - 1 )/ = 1 - ( m - 2 )/

Answer:

m- ( m - 1 )/ =1 - ( m - 2 )/

L.C.M. of the denominators, 2 and 3, is 6.

Multiplying both sides by 6, we obtain

6m − 3 ( m − 1 ) = 6 − 2 ( m − 2 )

⇒ 6m − 3m + 3 = 6 − 2m + 4 (Opening the brackets)

⇒ 6m − 3m + 2m = 6 + 4 − 3

⇒ 5m = 7

⇒ m = 7/5 
Question 7:

Simplify and solve the linear equation: 3( t − 3 ) = 5 ( 2t + 1 )

Answer:

3 ( t − 3 ) = 5 ( 2t + 1 )

⇒ 3t − 9 = 10t + 5 (Opening the brackets)

⇒ −9 − 5 = 10t − 3t

⇒ −14 = 7t

⇒ t = -7

Question 8:

Simplify and solve the linear equation: 15 ( y − 4 ) − 2 ( y − 9 ) + 5 ( y + 6 ) = 0

Answer:

15(y − 4) − 2(y − 9) + 5(y + 6) = 0

⇒ 15y − 60 − 2y + 18 + 5y + 30 = 0 (Opening the brackets)

⇒ 18y − 12 = 0

⇒ 18y = 12

⇒ y = 2/3
Question 9:

Simplify and solve the linear equation: 3 ( 5z − 7 ) − 2 ( 9z − 11 ) = 4 ( 8z − 13 ) − 17

Answer:

3(5z − 7) − 2(9z − 11) = 4(8z − 13)−17

⇒ 15z − 21 − 18z + 22 = 32z − 52 − 17 (Opening the brackets)

⇒ −3z + 1 = 32z − 69

⇒ −3z − 32z = −69 − 1

⇒ −35z = −70

⇒ z = 2

Question 10:

Simplify and solve the linear equation: 0.25 ( 4f − 3 ) = 0.05 ( 10f − 9 )

Answer:

0.25 ( 4f − 3 ) = 0.05 ( 10f − 9)

Multiplying both sides by 20, we obtain

5 ( 4f − 3 ) = 10f − 9

⇒ 20f − 15 = 10f − 9 (Opening the brackets)

⇒ 20f − 10f = − 9 + 15

⇒ 10f = 6

⇒ f = 0.6