exercise 1.1 class 8

class 8 maths exercise 1.1

exercise 1.1 class 8

Question 1:

Using appropriate properties find:\(\)

1. \(\displaystyle {-2\over 3}× {3\over 5} +{5\over 2} -{3\over 5} × {1\over 6} \)

2. \(\displaystyle {2\over 5}× [{-3\over 7}] -{1\over 6} × {3\over 2} + {1\over 14} × {2 \over 5}\)

Solution:

1). \(\displaystyle {-2\over 3}× {3\over 5} +{5\over 2} -{3\over 5} × {1\over 6} \) 
using commutative property of rational numbers

= \(\displaystyle {-2\over 3}× {3\over 5}  -{3\over 5} × {1\over 6}  +{5\over 2} \)

using distributive property of rational numbers

= \(\displaystyle ({-3\over 5})({2\over 3}  + {1\over 6} ) +{5\over 2}\)

= \(\displaystyle ({-3\over 5})({2 × 2 +1 \over 6} ) +{5\over 2}\)

= \(\displaystyle ({-3\over 5})({5 \over 6} ) +{5\over 2}\)

= \(\displaystyle ({-3\over 6})  +{5\over 2}\)

= \(\displaystyle ({-3+5 × 3 \over 6}) \)

=  \(\displaystyle {-3+15 \over 6}\)

=  \(\displaystyle {12 \over 6}\)

=  \({2}\)

2). \(\displaystyle {2\over 5}× [{-3\over 7}] -{1\over 6} × {3\over 2} + {1\over 14} × {2 \over 5}\)

using commutative property of rational numbers

= \(\displaystyle {2\over 5}× [{-3\over 7}] + {1\over 14} × {2 \over 5}-{1\over 6} × {3\over 2}\)

= \(\displaystyle {2\over 5}× [{-3\over 7} + {1\over 14} ]-{1\over 4} \)

= \(\displaystyle {2\over 5}× [{-3 ×2 +1 \over 14}  ]-{1\over 4} \)

= \(\displaystyle {2\over 5}× [{-5 \over 14}  ]-{1\over 4} \)

= \(\displaystyle {-1\over 7}-{1\over 4} \)

= \(\displaystyle {-4-7 \over 28} \)

=\(\displaystyle {-11 \over 28} \)

Question 2:

Write the additive inverse of each of the following:

\(\displaystyle  (i) {2 \over 8} (ii) {-5 \over 9} (iii) {-6 \over -5} (iv) {2 \over -9} (v) {19 \over -6} \)

Solution:

\(\displaystyle  (i) {2 \over 8}\)

Additive inverse = \( \displaystyle {- 2 \over 8}\)

\(\displaystyle  (ii) {-5 \over 9}\)

Additive inverse = \( \displaystyle {5 \over 9}\)

\(\displaystyle  (iii) {-6 \over -5}={6 \over 5}\)

Additive inverse = \( \displaystyle {-6 \over 5}\)

\( \displaystyle  (iv) {2 \over -9}\)

Additive inverse = \(\displaystyle  {2 \over 9}\)

\(\displaystyle   (v) {19 \over -6}\)

Additive inverse = \( \displaystyle {{19 \over 6}}\)

Question 3:

Verify that −(−x) = x for.

(i) \(\displaystyle x={11 \over 15}\) (ii) \(\displaystyle x={-13 \over 17}\)

Solution:

(i)\(\displaystyle x={11 \over 15}\)

The additive inverse of \(\displaystyle x={11 \over 15}\) is \(\displaystyle -x=-{11 \over 15}\) as \(\displaystyle {11 \over 15}+{-11 \over 15}=0\)

This equality \(\displaystyle {11 \over 15}+{-11 \over 15}=0\) represents that the additive inverse of \( \displaystyle {-11 \over 15} \) is \(\displaystyle {11 \over 15} \) or it can be said that \( \displaystyle -(-{11 \over 15})={11 \over 15}\) i.e., −(−x) = x.

(ii) \(\displaystyle x={-13 \over 17}\)

The additive inverse of \(\displaystyle x={-13 \over 17}\) is \(\displaystyle -x={13 \over 17}\) as \(\displaystyle {-13 \over 17}+{13 \over 17}=0\)

This equality \(\displaystyle {-13 \over 17}+{13 \over 17}=0\) represents that the additive inverse of \( \displaystyle {13 \over 17} \) is \(\displaystyle {-13 \over 17} \) i.e., −(−x) = x.

Question 4:

Find the multiplicative inverse of the following.

(i)\(\displaystyle -13 \)

(ii)\( \displaystyle {-13 \over 19}\)

(iii)\(\displaystyle  {1 \over 5} \)

(iv)\(\displaystyle {-5 \over 8}×{-3 \over 7} \)

(v)\(\displaystyle -1 × {-2 \over 5} \)

(vi)\(\displaystyle  −1\)

Solution:

(i) \(\displaystyle  -13 \)

Multiplicative inverse = \(\displaystyle  -{1\over 13} \)

(ii)\( \displaystyle {-13 \over 19}\)

Multiplicative inverse =\( -{19 \over 13}\)

(iii)\(\displaystyle  {1 \over 5} \)

Multiplicative inverse = \(\displaystyle  { 5} \)

(iv)\(\displaystyle {-5 \over 8}×{-3 \over 7} ={15 \over 56}\)

Multiplicative inverse=\(\displaystyle {56 \over 15} \)

(v)\(\displaystyle -1 × {-2 \over 5} \)

Multiplicative inverse=\(\displaystyle {5 \over 2} \)

(vi) \(\displaystyle  −1\)

Multiplicative inverse = \( \displaystyle −1\)

Question 5:

Name the property under multiplication used in each of the following:

(i) \(\displaystyle {-4 \over 5} × 1 = 1 × {-4 \over 5}={-4 \over 5} \)

(ii)\(\displaystyle {-13 \over 17} × {-2 \over 7}={-2 \over 7} × {-13 \over 17} \)

(iii)\(\displaystyle {-19 \over 29} × {29 \over -19} =1\)

Answer:

(i)Multiplicative identity.

(ii) Commutativity

(iii) Multiplicative inverse

Question 6:

Multiply by \(\displaystyle {6\over 13}\) the reciprocal of \(\displaystyle {-7 \over 16}\).

Answer:

\(\displaystyle {6\over 13} × ( \) the reciprocal of \(\displaystyle {-7 \over 16} )\)

=\(\displaystyle {6\over 13} × {-16 \over 7} ={-96 \over 91}\)

Question 7:

Tell what property allows you to compute \(\displaystyle {1 \over 3}×(6×{4 \over 3})\) as \(\displaystyle {1 \over 3}×6)×{4 \over 3}\) .

Answer:

Associativity

Question 8:

Is \(\displaystyle {8 \over 9}\) the multiplicative inverse of \(\displaystyle -1{1 \over 8}\) ? Why or why not?

Answer:

If it is the multiplicative inverse, then the product should be \(\displaystyle 1\).

However, here, the product is not \(\displaystyle 1\) as

\(\displaystyle {8 \over 9} × (-1{1 \over 8})={8 \over 9} × (-{9 \over 8})=-1\neq 1\)

Question 9:

Is \(\displaystyle 0.3\) the multiplicative inverse of \(\displaystyle 3{1 \over 3}\)? Why or why not?

Answer:

\(\displaystyle 3{1 \over 3}={10 \over 3}\)

\(\displaystyle 0.3 × 3{1 \over 3} = 0.3 × {10 \over 3}={3 \over 10} × {10 \over 3}=1\)

Here, the product is 1. Hence, 0.3 is the multiplicative inverse of \(\displaystyle 3{1 \over 3}\).

Question 10:

Write:

(i) The rational number that does not have a reciprocal.

(ii) The rational numbers that are equal to their reciprocals.

(iii) The rational number that is equal to its negative.

Answer:

(i) \(0\) is a rational number but its reciprocal is not defined.

(ii) \(1\) and \(-1\) are the rational numbers that are equal to their reciprocals.

(iii) \(0\) is the rational number that is equal to its negative.

Question 11:

Fill in the blanks.

(i) Zero has __________ reciprocal.

(ii) The numbers __________ and __________ are their own reciprocals

(iii) The reciprocal of  -5 is __________.

(iv) Reciprocal of \(\displaystyle {1\over x}\), where \(\displaystyle { x \neq 0}\) is __________.

(v) The product of two rational numbers is always a __________.

(vi) The reciprocal of a positive rational number is __________.

Answer:

(i) No

(ii) 1, −1 

(iii)\(\displaystyle -{1\over 5}\)

(iv)  x 

(v) Rational number

(vi) Positive rational number