Class 9 Lines and Angles Ex 6.3

ex 6.3 class 9
ncert class 9 maths chapter 6 solution, Lines and Angles Exercise 6.3 involve complete  answers for each question in the exercise 6.3. The solutions provide students a strategic methods  to prepare for their exam. Class 9 Maths Chapter 6 Lines and Angles exercise 6.3 questions and answers helps students to perform better in exam and it will  clear doubts definitely. Students will find it extremely easy to understand the questions and learn solving the problems.NCERT Solutions for Class 9 Maths Chapter 6 Lines and Angles prepared by www.mathematicsandinformationtechnology.com team in very delicate, easy and creative way.

1.      In Fig , sides QP and RQ of Δ PQR are produced to points S and T respectively. If SPR = 135° and PQT = 110°, find PRQ.

ex 6.3 class 9

Solution 1:

It is given that,

SPR = 135º and PQT = 110º

SPR + QPR = 180º (Linear pair angles)

135º + QPR = 180º

QPR = 45º

Also, PQT + PQR = 180º (Linear pair angles)

110º + PQR = 180º

PQR = 70º

As the sum of all interior angles of a triangle is 180º, therefore, for ∆PQR,

QPR + PQR + PRQ = 180º

45º + 70º + PRQ = 180º

PRQ = 180º − 115º

PRQ = 65º

2.      In Fig, X = 62°, XYZ = 54°. If YO and ZO are the bisectors of XYZ and XZY respectively of Δ XYZ, find OZY and YOZ.

ex 6.3 class 9

Solution 2:

As the sum of all interior angles of a triangle is 180º, therefore, for ∆XYZ,

X + XYZ + XZY = 180º

62º + 54º + XZY = 180º

XZY = 180º − 116º

XZY = 64º

OZY = 64 º/2 = 32º (OZ is the angle bisector of XZY)

Similarly, OYZ =54 º /2 = 27º

Using angle sum property for ∆OYZ, we obtain

OYZ+ YOZ+ OZY = 180º

27º + YOZ+ 32º= 180º

YOZ= 180º − 59º

YOZ= 121º

Hence, OZY = 32º and YOZ = 121º

3.       In Fig., if AB || DE, BAC = 35° and CDE = 53°, find DCE.

ex 6.3 class 9

Solution 3:

AB || DE and AE is a transversal.

BAC = CED (Alternate interior angles)

CED = 35º

In ∆CDE,

CDE + CED + DCE = 180º (Angle sum property of a triangle)

53º + 35º + DCE = 180º

DCE = 180º − 88º

DCE = 92º

4.       In Fig., if lines PQ and RS intersect at point T, such that PRT = 40°, RPT = 95° and TSQ = 75°, find SQT.

ex 6.3 class 9

Solution 4:

Using angle sum property for ∆PRT, we obtain

PRT + RPT + PTR = 180º

40º + 95º + PTR = 180º

PTR = 180º − 135º

PTR = 45º

STQ = PTR = 45º (Vertically opposite angles)

STQ = 45º

By using angle sum property for ∆STQ, we obtain

STQ + SQT + QST = 180º

45º + SQT + 75º = 180º

SQT = 180º − 120º

SQT = 60º

5.       In Fig, if PQ PS, PQ || SR, SQR = 28° and QRT = 65°, then find the values of x and y.

ex 6.3 class 9

Solution 5:

It is given that PQ || SR and QR is a transversal line.

PQR = QRT (Alternate interior angles)

x + 28º = 65º

x = 65º − 28º

x = 37º

By using the angle sum property for ∆SPQ, we obtain 

SPQ + x + y = 180º

90º + 37º + y = 180º

y = 180º − 127º

y = 53º

x = 37º and y = 53º

6.     In Fig. 6.44, the side QR of Δ PQR is produced to a point S. If the bisectors of PQR and PRS meet at point T, then prove that

½ ∠ QTR =QPR.

ex 6.3 class 9

Solution 6:

In ∆QTR, TRS is an exterior angle.

QTR + TQR = TRS

QTR = TRS − TQR … (1)

For ∆PQR, PRS is an external angle.

QPR + PQR = PRS

QPR + 2TQR = 2TRS (As QT and RT are angle bisectors)

QPR = 2(TRS − TQR)

QPR = 2QTR [By using Equation (1)]

½ QTR = QPR