Question 1:
In the given figure, lines AB and CD intersect at O. If ∠AOC+∠BOE=70º and ∠BOD=40º, find ∠BOE and reflex ∠COE.
Solution 1:
AB is a straight line, rays OC and OE stand on it.
∠AOC+∠COE+∠BOE=180º
(∠AOC+∠BOE)+∠COE=180º
70º+∠COE=180º
∠COE=180º-70º=110º
Reflex ∠COE=360-110=250
CD is a straight line, rays OE and OB stand on it.
∠COE+∠BOE+∠BOD=180º
110º+∠BOE+40º=180º
∠BOE=180º-150º=30º
Hence, ∠BOE = 30º and Reflex ∠COE = 250º
Question 2:
In the given figure, lines XY and MN intersect at O. If ∠POY = 90º and a: b = 2:3, find c.
Solution 2:
Let the common ratio between a and b be x.
∴ a = 2x, and b = 3x
XY is a straight line, rays OM and OP stand on it.
∴ ∠XOM + ∠MOP + ∠POY = 180º
b + a + ∠POY = 180º
3x + 2x + 90º = 180º
5x = 90º
x = 18º
a = 2x = 2 × 18 = 36º
b = 3x= 3 ×18 = 54º
MN is a straight line. Ray OX stands on it.
∴ b + c = 180º (Linear Pair)
54º + c = 180º
c = 180º − 54º = 126º
∴ c = 126º
Question 3:
In the given figure, ∠PQR = ∠PRQ, then prove that ∠PQS = ∠PRT.
Solution 3:
In the given figure, ST is a straight line and ray QP stands on it.
∴ ∠PQS + ∠PQR = 180º (Linear Pair)
∠PQR = 180º − ∠PQS … (1)
∠PRT + ∠PRQ = 180º (Linear Pair)
∠PRQ = 180º − ∠PRT … (2)
It is given that ∠PQR = ∠PRQ.
Equating Equations (1) and (2), we obtain
180º − ∠PQS = 180 − ∠PRT
∠PQS = ∠PRT (Proved)
Question 4:
In the given figure, if x+y=w+z then prove that AOB is a line.
Solution 4:
It can be observed that,
x + y + z + w = 360º (Complete angle)
It is given that,
x + y = z + w
∴ x + y + x + y = 360º
2(x + y) = 360º
x + y = 180º
Since x and y form a linear pair, therefore, AOB is a line. (Proved)
Question 5:
In the given figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that
∠ROS =½
Solution 5:
It is given that OR ⊥ PQ
∠POR = 90º
∠POS + ∠SOR = 90º
∠ROS = 90º − ∠POS … (1)
∠QOR = 90º (As OR ⊥ PQ)
∠QOS − ∠ROS = 90º
∠ROS = ∠QOS − 90º … (2)
On adding Equations (1) and (2), we obtain
2 ∠ROS = (∠QOS − ∠POS)
∠ROS =½
Question 6:
It is given that ∠XYZ = 64o and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects ∠ZYP, find ∠XYQ and reflex ∠QYP.
Solution 6:
It is given that line YQ bisects ∠PYZ.
Hence, ∠QYP = ∠ZYQ
It can be observed that PX is a line. Rays YQ and YZ stand on it.
∠XYZ + ∠ZYQ + ∠QYP = 180º
64º + 2∠QYP = 180º
2∠QYP = 180º − 64º = 116º
∠QYP = 58º
Also, ∠ZYQ = ∠QYP = 58º
Reflex ∠QYP = 360º − 58º = 302º
∠XYQ = ∠XYZ + ∠ZYQ
= 64º + 58º = 122º
Hence, ∠XYQ = 122º, Reflex ∠QYP = 302º.