ex 2.2 class 9

polynomials

Question 1: 

Find the value of the polynomial at 5x-4x2+3 at

(i)x = 0

(ii) x = −1

(iii)x = 2

Solution 1:

(i) p(x)=5x−4x2+3

    p(0)=5(0)−4(0)2+3

            =3

(ii)p(x)=5x−4x2+3

   p(−1)=5(−1)−4(−1)2+3

            =−5−4(1)+3

            =−6

(iii) p(x)=5x−4x2+3

p(2)=5(2)−4(2)2+3

        =10−16+3

        =−3


Question 2:

Find p(0), p(1) and p(2) for each of the following polynomials:

(i)p(y) = y2 âˆ’ y + 1

(ii)p(t) = 2 + t + 2t2 âˆ’ t3

(iii)p(x) = x3

(iv)p(x) = (x − 1) (x + 1)

Solution 2:

(i)p(y)=y2−y+1

p(0)=(0)2−(0)+1

        =1

p(1)=(1)2−(1)+1

        =1–1+1

        =1

p(2)=(2)2−(2)+1

        =4−2+1

        =3

(ii)p(t)=2+t+2t2−t3

p(0)=2+0+2(0)2−(0)3

        =2

p(1)=2+(1)+2(1)2−(1)3

        =2+1+2−1

        =4

p(2)=2+2+2(2)2−(2)3

        =2+2+8−8

        =4

(iii)p(x)=x2

p(0)=(0)3=0

p(1)=(1)3=1

p(2)=(2)3=8

(iv) p(x)=(x−1)(x+1)

p(0)=(0−1)(0+1)

        =(−1)(1)

        =−1

p(1)=(1−1)(1+1)

        =0(2)

        =0

p(2)=(2−1)(2+1)

        =1(3)

        =3


Question 3:

Verify whether the following are zeroes of the polynomial, indicated against them.

(i)p(x)=3x+1,x=−13

(ii)p(x)=5x−π,x=45

(iii)p(x)=x2−1,x=1,−1

(iv)p(x)=(x+1)(x−2),x=−1,2

(v)p(x)=x2,x=0

(vi)p(x)=lm+m,x=−ml

(vii)p(x)=3x2−1,x=−1√3,−2√3

(viii)p(x)=2x+1,x=12

Solution 3:

(i) If x=−13 is a zero of given polynomial p(−13)=3x+1, then, p(−13) should be 0.

Here, p(−13)=3(−13)+1=−1+1=0

Therefore, p(x)=3x+1,x=−13, is a zero of the given polynomial.

(ii)If x=45 is a zero of given polynomial

p(x)=5x−π then x=(45) should be 0.

Here, p(45)=5(45)−π=4−π.

As p(45)≠0.

Therefore, p(x)=5x−π, is not a zero of the given polynomial.

(iii)If x=1 and x=−1 are zeroes of polynomial p(x)=x2−1, then p(1) and p(−1) should be 0.

Here, p(1)=(1)2−1=0, and

p(−1)=(−1)2−1=0

Hence, x=1 and −1 are zeroes of the given polynomial.

(iv)If x=−1 and x=2 are zeroes of polynomial p(x)=(x+1)(x−2), then p(−1) and p(2) should be 0.

Here, p(−1)=(−1+1)(−1−2)=0(−3)=0, and

p(2)=(2+1)(2−2)=3(0)=0

Therefore, x=−1 and x=2 are zeroes of the given polynomial.

(v)If x=0 is a zero of polynomial p(x)=x2, then p(0) should be zero.

Here, p(0)=(0)2=0

Hence, x=0 is a zero of the given polynomial.


Question 4:

Find the zero of the polynomial in each of the following cases:

(i)p(x) = x + 5

(ii)p(x) = x – 5

(iii)p(x) = 2x + 5

(iv) p(x) = 3x – 2

(v)p(x) = 3x

(vi) p(x) = ax, a ≠ 0

(vii) p(x) = cx + d, c ≠ 0, c, d are real numbers.

Solution 4:

Zero of a polynomial is that value of the variable at which the value of the polynomial is obtained as 0.

(i)p(x)=x+5

Let p(x)=0

x+5=0

x=−5

Therefore, for x=−5, the value of the polynomial is 0 and hence, x=−5 is a zero of the given polynomial

(ii)p(x)=x−5

Let p(x)=0

x−5=0

x=5

Therefore, for x=5, the value of the polynomial is 0 and hence, x=5 is a zero of the given polynomial.

(iii)p(x)=2x+5

Let p(x)=0

2x+5=0

2x=−5

x=−52

Therefore, x=−52 for, the value of the polynomial is 0 and hence,x=−52 is a zero of the given polynomial.

(iv)p(x)=3x–2

p(x)=0

3x−2=0

Therefore, for x=23, the value of the polynomial is 0 and hence, x=23 is a zero of the given polynomial.

(v)p(x)=3x

Let p(x)=0

3x=0

x=0

Therefore, for x=0, the value of the polynomial is 0 and hence, x=0 is a zero of the given polynomial.

(vi)p(x)=ax

Let p(x)=0

ax=0

x=0

Therefore, for x=0, the value of the polynomial is 0 and hence, x=0 is a zero of the given polynomial.

(vii)p(x)=cx+d

Let p(x)=0

cx+d=0

x=−dc

Therefore,for x=−dc , the value of the polynomial is 0 and hence, x=−dc is a zero of the given polynomial.