class 7 maths chapter 1 exercise 1.4 solutions

Integers-1.1

class 7 maths chapter 1 exercise 1.4 solutions

simple solutions for class 7 maths chapter 1 exercise 1.4 solutions are given here in the post. This class 7 maths chapter 1 exercise 1.4 solutions contains topics related to the raw data collection and its organisation. so we definitely want students of Class 7 to solve class 7 maths chapter 1 exercise 1.4 solutions to empower their basics and test the students capability of understanding the concepts. It also helps the students of CBSE Class 7 Maths students

Question 1.

Evaluate each of the following:


(a) (-30) ÷ 10

(b) 50 ÷ (-5)

(c) (-36) ÷ (-9)

(d) (-49) ÷ (49)

(e) 13 ÷ [(-2) + 1]

(f) 0 ÷ (-12)

(g) (-31) ÷ [(-30) + (-1)]

(h) [(-36) ÷ 12] ÷ 3

(i) [(-6) + 5] ÷ [(-2) + 1]

Solution:

(a) (−30)÷10=−3010=−3

(b) 50÷(−5)=50−5=−10

(c) (−36)÷(−9)=−36−9=4

(d) (−49)÷(49)=−4949=−1

(e) 13÷[(−2)+1]

        =13÷−1

        =13−2

        =−13

(f) 0÷(−12)=0−12=0

(g) (−31)÷[(−30)+(−1)]

        =(−31)÷(−31)

        =−31−31

        =1


(h) [(−36)+12]÷3

        =[−3612]÷3

        =−3÷3

        =−33

        =−1

(i) [(−6)+5]+[(−2)+1]

        =(−1)÷(−1)

        =−−1

        =1

Question 2.

Verify that:
 a ÷ (b + c) ≠ (a ÷ b) + (a ÷ c) for each of the following values of  a, b and c.

(а) a = 12, b = – 4, c = 2

(b) a = (-10), b = 1, c = 1

Solution:

(a) a=12,6=–4,c=2

a÷(b+c)=12÷[(−4)+2]

            =12÷(−2)

            =12−2

            =−6

(a÷b)+(a÷c)=[12÷(−4)]+[12÷2]

                        =12−4+122

                        =−3+6=3

Since, (−6)+3

Hence, a÷(b+c)+(a÷b)+(a÷c)

(b) a=(−10),b=1,c=1

a÷(b+c)=(−10)÷(1+1)

                    =(−10)÷2

                    =−102

                    =−5

(a÷b)+(a÷c)=[(−10)÷1]+[(−10)÷1]

=(−10)1+−101

=(−10)+(−10)=−20

Since (−5)≠(−20)

Hence, a÷(b+c)≠(a÷b)+(a÷c)

Question 3.

Fill in the blanks:

(a) 369 ÷ ___ = 369

(b)  (-75) ÷ ___ = -1

(c) (-206) ÷ ___ =1

(d) -87 ÷ ___ = -87

(e) ___ ÷ 1 = -87

(g) 20 ÷ ___ = -2

Solution:

(a) 369 ÷ ___ = 369 = 369 ÷ 1 = 369

(b) (-75) ÷ ___ = -1 = (-75) ÷ 75 = -1

(c) (-206) ÷ ___ = 1 = (-206) ÷ (-206) = 1

(d) 87 ÷ ___ = 87 = -87 ÷ (-1) = 87

(e) ___ ÷ 1 = -87 = -87 ÷ 1 = -87 

(f) ___ ÷ 48 = -1 = (-48) ÷ 48 = -1

(g) 20 + ___ = -2 = 20 ÷ (-10) = -2

(h) ___ + (4) = -3 = (-12) ÷ (4) = -3

Question 4.

Write five pairs of integers
(a,b) such that a÷b=−3 . One such pair is (6,−2)  because 6+(−2)=−3 .

Solution:

(a) (24, -8) because  24 ÷ (-8) = -3 

(b) (-12, 4) because (-12) ÷ 4 = -3

(c) (15, -5) because 15 ÷ (-5) = -3

(d) (18, -6) because 18 ÷ (-6) = -3

(e) (60, -20) because 60 ÷ (-20) = -3

Question 5.

The temperature at
 12 noon was 10 °C above zero. If it decreases at the rate of 2 °C per hour until midnight, at what time would the temperature be 8 °C below zero? What would be the temperature at midnight?

Solution:

Temperature at 12 noon was 10°C above zero i.e. + 10 °C

Rate of decrease in temperature per hour = 2°C

Number of hours from 12 noon to midnight = 12

∴ Change in temperature in 12 hours

= 12 Ã— (-2°C) = -24°C

∴ Temperature at midnight

= +10°C+(−24°C)=−14°C

Hence, the required temperature at midnight =−14°C

Difference in temperature between + 10°C and -8°C

= +10° C– (-8°C ) = +10°C + 8°C = 18°C

Number of hours required = 18°C2°C= 9 hours

∴ Time after 9 hours from 12 noon = 9 pm.

Question 6.

In a class test (+3) marks are given for every correct answer and (-2) marks are given for every incorrect answer and no marks for not attempting any question:

(i) Radhika scored 20 marks. If she has got 12 correct answers, how many questions has she attempted incorrectly?

(ii) Mohini scores -5 marks in this test, though she has got 7 correct answers. How many questions has she attempted incorrectly?

Solution:

Given that:

+3 marks are given for each correct answer. (-2) marks are given for each incorrect answer. Zero marks for not attempted questions.

(i) Marks obtained by Radhika for 12 correct answers = (+3) × 12 = 36

Marks obtained by Radhika for correct answers = 12 × 3 = 36

Total marks obtained by Radhika = 20

∴ Marks obtained by Radhika for incorrect answers = 20 – 36 = -16

Number of incorrect answers

=(−16)÷(−2)=(−16)(−2)=8

Hence, the required number of incorrect answers = 8

(ii) Marks scored by Mohini = -5

Number of correct answers = 7

∴ Marks obtained by Mohini for 7 correct answers = 7 × (+3) – 21

Marks obtained for incorrect answers

= -5 – 21 = (-26)

∴ Number of incorrect answers

= (-26) ÷ (-2) = 13

Hence, the required number of incorrect answers – 13.

Question 7.

An elevator descends into a nine shaft at the rate of 6 m/min. If the descent starts from 10 m above the ground level, how long will it take to reach -350 m.

Solution:

The present position of the elevator is at 10 in above the ground level.

Distance moved by the elevator below the ground level = 350 m

Total distance moved by elevator = 350 m + 10 m 

                                                            = 360 m

Rate of descent = 6 m/min.

Total time taken by the elevator = 
3606

                                                    = 60 minutes

                                                     = 1 hour

Hence, the required time = 1 hour